350 research outputs found

    A Behavioral Analysis of Spatial Neglect and its Recovery After Stroke

    Get PDF
    In a longitudinal study of recovery of left neglect following stroke using reaction time computerized assessment, we find that lateralized spatial deficits of attention and perception to be more severe than disturbance of action. Perceptual-attention deficits also show the most variability in the course of recovery, making them prime candidates for intervention. In an anatomical analysis of MRI findings, ventral frontal cortex damage was correlated with the most severe neglect, reflecting impaired fronto-parietal communication

    Episodic memory retrieval, parietal cortex, and the default mode network: Functional and topographic analyses

    Get PDF
    The default mode network (DMN) is often considered a functionally homogeneous system that is broadly associated with internally directed cognition (e.g., episodic memory, theory of mind, self-evaluation). However, few studies have examined how this network interacts with other networks during putative default processes such as episodic memory retrieval. Using functional magnetic resonance imaging, we investigated the topography and response profile of human parietal regions inside and outside the DMN, independently defined using task-evoked deactivations and resting-state functional connectivity, during episodic memory retrieval. Memory retrieval activated posterior nodes of the DMN, particularly the angular gyrus, but also more anterior and dorsal parietal regions that were anatomically separate from the DMN. The two sets of parietal regions showed different resting-state functional connectivity and response profiles. During memory retrieval, responses in DMN regions peaked sooner than non-DMN regions, which in turn showed responses that were sustained until a final memory judgment was reached. Moreover, a parahippocampal region that showed strong resting-state connectivity with parietal DMN regions also exhibited a pattern of task-evoked activity similar to that exhibited by DMN regions. These results suggest that DMN parietal regions directly supported memory retrieval, whereas non-DMN parietal regions were more involved in postretrieval processes such as memory-based decision making. Finally, a robust functional dissociation within the DMN was observed. Whereas angular gyrus and posterior cingulate/precuneus were significantly activated during memory retrieval, an anterior DMN node in medial prefrontal cortex was strongly deactivated. This latter finding demonstrates functional heterogeneity rather than homogeneity within the DMN during episodic memory retrieval

    The impact of the Geometric Correction Scheme on MEG functional topology at rest

    Get PDF
    Spontaneous activity is correlated across brain regions in large scale networks (RSN) closely resembling those recruited during several behavioral tasks and characterized by functional specialization and dynamic integration. Specifically, MEG studies revealed a set of central regions (dynamic core) possibly facilitating communication among differently specialized brain systems. However, source projected MEG signals, due to the fundamentally ill-posed inverse problem, are affected by spatial leakage, leading to the estimation of spurious, blurred connections that may affect the topological properties of brain networks and their integration. To reduce leakage effects, several correction schemes have been proposed including the Geometric Correction Scheme (GCS) whose theory, simulations and empirical results on topography of a few RSNs were already presented. However, its impact on the estimation of fundamental graph measures used to describe the architecture of interactions among brain regions has not been investigated yet. Here, we estimated dense, MEG band-limited power connectomes in theta, alpha, beta, and gamma bands from 13 healthy subjects (all young adults). We compared the connectivity and topology of MEG uncorrected and GCS-corrected connectomes. The use of GCS considerably reorganized the topology of connectivity, reducing the local, within-hemisphere interactions mainly in the beta and gamma bands and increasing across-hemisphere interactions mainly in the alpha and beta bands. Moreover, the number of hubs decreased in the alpha and beta bands, but the centrality of some fundamental regions such as the Posterior Cingulate Cortex (PCC), Supplementary Motor Area (SMA) and Middle Prefrontal Cortex (MPFC) remained strong in all bands, associated to an increase of the Global Efficiency and a decrease of Modularity. As a comparison, we applied orthogonalization on connectomes and ran the same topological analyses. The correlation values were considerably reduced, and orthogonalization mainly decreased local within-hemisphere interactions in all bands, similarly to GCS. Notably, the centrality of the PCC, SMA and MPFC was preserved in all bands, as for GCS, together with other hubs in the posterior parietal regions. Overall, leakage correction removes spurious local connections, but confirms the role of dynamic hub regions, specifically the anterior and posterior cingulate, in integrating information in the brain at rest

    Semantic wikis as flexible database interfaces for biomedical applications

    Get PDF
    Several challenges prevent extracting knowledge from biomedical resources, including data heterogeneity and the difficulty to obtain and collaborate on data and annotations by medical doctors. Therefore, flexibility in their representation and interconnection is required; it is also essential to be able to interact easily with such data. In recent years, semantic tools have been developed: semantic wikis are collections of wiki pages that can be annotated with properties and so combine flexibility and expressiveness, two desirable aspects when modeling databases, especially in the dynamic biomedical domain. However, semantics and collaborative analysis of biomedical data is still an unsolved challenge. The aim of this work is to create a tool for easing the design and the setup of semantic databases and to give the possibility to enrich them with biostatistical applications. As a side effect, this will also make them reproducible, fostering their application by other research groups. A command-line software has been developed for creating all structures required by Semantic MediaWiki. Besides, a way to expose statistical analyses as R Shiny applications in the interface is provided, along with a facility to export Prolog predicates for reasoning with external tools. The developed software allowed to create a set of biomedical databases for the Neuroscience Department of the University of Padova in a more automated way. They can be extended with additional qualitative and statistical analyses of data, including for instance regressions, geographical distribution of diseases, and clustering. The software is released as open source-code and published under the GPL-3 license at https://github.com/mfalda/tsv2swm

    The effects of hemodynamic lag on functional connectivity and behavior after stroke

    Get PDF
    Stroke disrupts the brain's vascular supply, not only within but also outside areas of infarction. We investigated temporal delays (lag) in resting state functional magnetic resonance imaging signals in 130 stroke patients scanned two weeks, three months and 12 months post stroke onset. Thirty controls were scanned twice at an interval of three months. Hemodynamic lag was determined using cross-correlation with the global gray matter signal. Behavioral performance in multiple domains was assessed in all patients. Regional cerebral blood flow and carotid patency were assessed in subsets of the cohort using arterial spin labeling and carotid Doppler ultrasonography. Significant hemodynamic lag was observed in 30% of stroke patients sub-acutely. Approximately 10% of patients showed lag at one-year post-stroke. Hemodynamic lag corresponded to gross aberrancy in functional connectivity measures, performance deficits in multiple domains and local and global perfusion deficits. Correcting for lag partially normalized abnormalities in measured functional connectivity. Yet post-stroke FC-behavior relationships in the motor and attention systems persisted even after hemodynamic delays were corrected. Resting state fMRI can reliably identify areas of hemodynamic delay following stroke. Our data reveal that hemodynamic delay is common sub-acutely, alters functional connectivity, and may be of clinical importance

    Dorsal and ventral attention systems underlie social and symbolic cueing

    Get PDF
    none3siEye gaze is a powerful cue for orienting attention in space. Studies examining whether gaze and symbolic cues recruit the same neural mechanisms have found mixed results. We tested whether there is a specialized attentional mechanism for social cues. We separately measured BOLD activity during orienting and reorienting attention following predictive gaze and symbolic cues. Results showed that gaze and symbolic cues exerted their influence through the same neural networks but also produced some differential modulations. Dorsal frontoparietal regions in left intraparietal sulcus (IPS) and bilateral MT+/lateral occipital cortex only showed orienting effects for symbolic cues, whereas right posterior IPS showed larger validity effects following gaze cues. Both exceptions may reflect the greater automaticity of gaze cues: Symbolic orienting may require more effort, while disengaging attention during reorienting may be more difficult following gaze cues. Face-selective regions, identified with a face localizer, showed selective activations for gaze cues reflecting sensory processing but no attentional modulations. Therefore, no evidence was found linking face-selective regions to a hypothetical, specialized mechanism for orienting attention to gaze cues. However, a functional connectivity analysis showed greater connectivity between face-selective regions and right posterior IPS, posterior STS, and inferior frontal gyrus during gaze cueing, consistent with proposals that face-selective regions may send gaze signals to parts of the dorsal and ventral frontoparietal attention networks. Finally, although the default-mode network is thought to be involved in social cognition, this role does not extend to gaze orienting as these regions were more deactivated following gaze cues and showed less functional connectivity with face-selective regions during gaze cues.mixedCallejas, Alicia; Shulman, Gordon L.; Corbetta, MaurizioCallejas, Alicia; Shulman, Gordon L.; Corbetta, Maurizi

    Attention to memory and the environment: functional specialization and dynamic competition in human posterior parietal cortex

    Get PDF
    none3siPosterior parietal cortex has been traditionally associated with perceptual attention and sensory-motor processing, but recent studies also indicate a potential role in episodic memory retrieval. Here, we developed a new paradigm to isolate top-down attention-related activity directed to either memory or perceptual information. We demonstrated a robust topographic separation in human posterior parietal cortex associated with searching for task-relevant information in episodic memory or in the environment. Control analyses confirmed that this difference was not dependent on differences in sensory stimulation or eye movements across tasks. Notably, we observed in memory-and perception-related regions a mechanism of reciprocal dynamic competition that was related to behavioral performance. These results provide the first evidence for a double dissociation between parietal networks involved in top-down attention to memory and the environment and support the idea of neural competition between perception and memory.openSestieri, Carlo; Shulman, Gordon L.; Corbetta, MaurizioSestieri, Carlo; Shulman, Gordon L.; Corbetta, Maurizi
    • …
    corecore